golden ratio

黄金比例(Golden Ratio)的定义在于解决以下等比数列的一次平方方程。它的数学形式可以用斐波那契数列的相邻数之间的比值来表示,而这个比值在数列趋于无穷时趋近于一个常数,这个常数就是黄金比例。

设黄金比例为 ϕ,可以通过以下等式来定义:

ϕ=Fn+1Fn

其中 Fn+1Fn 是斐波那契数列中的连续项。斐波那契数列的一个重要性质是:Fn+1=Fn+Fn1,将这个性质代入上面的等式,我们可以得到:

ϕ=1+1ϕ

进一步整理,我们可以得到一个一次平方方程:

ϕ2ϕ1=0

使用求根公式解这个一次平方方程,我们可以得到 ϕ 的值:

ϕ=1+52

这个值约等于 1.61803,这就是著名的黄金比例。


本文作者:Maeiee

本文链接:golden ratio

版权声明:如无特别声明,本文即为原创文章,版权归 Maeiee 所有,未经允许不得转载!


喜欢我文章的朋友请随缘打赏,鼓励我创作更多更好的作品!